
Microscopic origin of granular ratcheting

S. McNamara and R. García-Rojo
Institut für Computerphysik, Universität Stuttgart, D-70569 Stuttgart, Germany

H. J. Herrmann
Computational Physics, IfB, HIF E12, ETH Hönggerberg, CH-8093, Zürich, Switzerland

�Received 9 August 2007; published 13 March 2008�

Numerical simulations of assemblies of grains under cyclic loading exhibit “granular ratcheting:” a small net
deformation occurs with each cycle, leading to a linear accumulation of deformation with cycle number. We
show that this is due to a curious property of the most frequently used models of the particle-particle interac-
tion: namely, that the potential energy stored in contacts is path dependent. There exist closed paths that change
the stored energy, even if the particles remain in contact and do not slide. An alternative method for calculating
the tangential force removes granular ratcheting.
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I. INTRODUCTION

Granular ratcheting refers to the slow linear accumulation
of strain in a granular sample under cyclic loading. Several
versions of this phenomena have been identified. The first
variant to be found occurs when the loaded sample reaches
the critical state once per cycle. The mechanism is easily
understood: the material flows while it is in the critical state,
giving rise to a deformation that accumulates with cycle
number. However, ratcheting can also appear even when the
sample never reaches the critical state �1�. In the following,
we discuss exclusively this second type of ratcheting.

Ratcheting in the absence of a critical state has also been
observed in numerical simulations �2–6�. This is a very
promising development, for one has access to all the quanti-
ties in numerical simulations, and it is usually possible to
identify the origin of the phenomena. Once this has been
done, one can then ask if the cause of the phenomena in the
simulations is related to the cause in the experiments.

Numerical studies have already provided many clues to
granular ratcheting. The important role of sliding contacts
has been pointed out �2�, granular ratcheting has been delim-
ited from other possible behaviors �3�, and the influence of
various parameters has been studied �4,5�. Ratcheting has
also been observed in three dimensions �6�. One finding of
these studies is that granular ratcheting is a quasistatic phe-
nomena. Specifically, if one lets the frequency of the oscil-
lating force tend to zero while keeping all other parameters
the same, the deformation per cycle approaches a constant.

What is still missing is an understanding of granular
ratcheting on the micromechanical level: How exactly does
the phenomenon arise from interaction of individual par-
ticles? Is it possible to modify the particle interaction law to
eliminate ratcheting? What is the simplest system needed to
produce ratcheting? In this paper, we show that granular
ratcheting in simulations arises due to the tacit approxima-
tion that the particle overlap can be neglected when calculat-
ing relative velocities. This approximation leads to a contact
where an exactly periodic movement is in general impos-
sible. If the particles move and then return to their original
positions, there will be a change in the force between them.
This occurs even when the contact remains nonsliding. A

packing of such particles will exhibit ratcheting when sub-
jected to cyclic loading.

In Sec. II we survey ratcheting in small systems, noting
that ratcheting occurs if one single contact slides, or if cer-
tain unconventional boundary conditions are applied. These
observations will prove useful in Sec. III, where we show
how granular ratcheting arises from the way tangential forces
are calculated. In Sec. IV A we present an alternative method
that does not exhibit ratcheting. Finally, in the Appendix, we
show how stiffness matrix theory can illuminate some as-
pects of the problem.

II. DESCRIPTION OF GRANULAR RATCHETING

A. Model definition

In this section, we present a very brief description of
granular ratcheting, since more complete discussions already
exist �4�. Granular ratcheting is observed in biaxial or triaxial
tests, where a granular sample is enclosed in a test chamber,
and subjected to a uniform pressure and a cyclic load. We
consider here exclusively the two-dimensional version of
these experiments, often called the “biaxial box,” where a
granular sample composed of disks is enclosed in a rectan-
gular box of dimensions Lx�Ly, with forces Fx and Fy ex-
erted on the walls. The forces are

Fx = P0Ly, Fy = Lx�P0 + q�t�� , �1�

where P0 is the pressure exerted on the sample, and q�t� is a
periodic function, usually sinusoidal. In the simulations pre-
sented here, q�t�=���1−cos �t�. One usually uses devia-
toric strain

� =
Ly

Ly0
−

Lx

Lx0
, �2�

to characterize the deformation. �Here Lx0 and Ly0 are the
lengths of the system at the beginning of the simulation.�

We use a common numerical model of granular materials:
grains are represented by disks who repel each other when
they overlap. Thus whenever two disks touch each other,
they exert a repulsive force Fn at the point of contact, di-
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rected normal to the particle surfaces. Fn is an increasing
function of the overlap Dn. If the surfaces of two touching
disks move relative to each other in the tangential direction,
a second force Ft arises, directed tangent to the particle sur-
faces. Fn and Ft are called the normal and tangential compo-
nents of the contact force. In addition to these forces, damp-
ing forces proportional to the relative velocity are included to
remove energy injected by the loading.

The contact force is subjected to two constraints, namely,

Fn � 0, �Fn � �Ft� . �3�

The first condition excludes cohesion, and the second is the
Coulomb friction law. The constant � is the Coulomb
friction coefficient. Contacts where �Ft�=�Fn are called
“sliding” contacts, and those where �Ft�	�Fn are called
“nonsliding.” All studies of granular ratcheting use this
model, except sometimes polygons are used instead of disks
�2�.

B. Ratcheting with sixteen particles

If one wishes to approximate the continuumlike behavior
of soils, simulations with large numbers of particles are nec-
essary. Therefore, granular ratcheting has been studied in as-
semblies of hundreds or thousands of particles. In this paper,
however, we wish simply to discover the origin of the phe-
nomena, so it is useful to consider small numbers of par-
ticles. In this section, we study an assembly of sixteen par-
ticles that exhibits granular ratcheting. The normal force is
taken to be proportional to the overlap area, as in Ref. �4�.

In Fig. 1 we show a plot of � vs q for a biaxial test
performed on sixteen circular particles. In the first cycle, �
increases to about 0.7%. During subsequent cycles, the sys-
tem appears to trace out a four-sided polygon in the q-�
plane. However, the path is not quite a polygon, because the
system does not quite return to its starting point after one
cycle, but to one where � is slightly larger. This is made
obvious in Fig. 2, where � is plotted at t=nT, were T is the
period of the cyclic loading, and n=0,1 ,2 , . . . . A small, lin-
ear increase of � with cycle number is visible. This is granu-
lar ratcheting.

The deformation per cycle is very small—less than 10−6

in Fig. 2, and constant after the first few cycles. These two

properties belong together. If the deformation were large, the
configuration would change significantly from one cycle to
the next, leading to a different value of the deformation at
each cycle. In this case, the line in Fig. 2 would not be
straight, and ratcheting could not be recognized.

During one cycle, all the contacts remain nonsliding, ex-
cept for one, which becomes sliding twice per cycle. This
single contact is responsible for granular ratcheting, for if we
inhibit sliding at this contact by increasing �, granular ratch-
eting stops. However, we show in the next section that ratch-
eting can also occur without sliding contacts with slightly
different boundary conditions.

In Fig. 3, we show the trajectory of the sliding contact in
its �Fn ,Ft� plane. The equalities �Ft�=�Fn are also shown on
the graph, and form a cone, with the vertex at the origin. The
conditions in Eq. �3� mean that �Fn ,Ft� must always lie
within this cone. As one can see, the ratcheting contact’s
trajectory is a trapezoid, with the four corners labeled A, B,
C, and D. The two parallel line segments correspond to the
change in force when all contacts are nonsliding. Line seg-
ments BC and DA lie on the sides of the cone �Ft�=�Fn, and
correspond to times when the contact is sliding with Ft
=�Fn or Ft=−�Fn, respectively. The trajectory is not quite a
trapezoid, because after one cycle, the point does not return
to A, but arrives at A�, a bit closer to the origin than, but very
close to, A. After the following cycle, the system has again
shifted toward the origin by the same amount. This shift has
its origin in the tiny displacement that occurs with each
cycle—the sliding contact is gradually opening.
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FIG. 1. Stress-strain curve of the system with 16 particles dis-
cussed in Sec. II B.
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FIG. 2. Accumulated strain for the system shown in Fig. 1.
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FIG. 3. A sketch of the sliding contact’s trajectory in its �Fn ,Ft�
plane. The diagonal dotted lines show the Coulomb condition given
in Eq. �3�.
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The nonsliding contacts in the packing also trace out trap-
ezoids, but their edges do not intersect the cone �Ft�=�Fn.
Some examples are shown in Fig. 4. The corners of these
trapezoids correspond to the times when the sliding contact
begins or stops sliding. When all contacts remain nonsliding,
the trajectories are no longer trapezoids, but straight lines:
under loading, each contact force moves on a straight line,
and under unloading, it simply retraces its path. The reason
for this is given in the Appendix.

C. Ratcheting without sliding contacts

When the force on both walls is varied cyclically:

Fx = Ly�P0 + qx�t��, Fy = Lx�P0 + qy�t�� , �4�

ratcheting can occur without sliding contacts. We carried out
simulations of a small �16 particles� system with Eq. �4�,
with

qx�t� = ���1 − cos �t + 
�, qy�t� = ���1 − cos �t� .

�5�

Note the presence of a phase shift 
 between Fx and Fy. We
call this form of loading “elliptic” cyclic loading, because
ellipses are traced out in the �Fx ,Fy� plane. During these
simulations, sliding was suppressed by setting �=�. The
results are shown in Fig. 5. The strain �� per cycle is pro-
portional to sin 
. If one traces out the path of qx�t� ,qy�t� in
the qx ,qy plane, then one obtains an ellipse whose area is
proportional to sin 
. Tracing out any contact in the Fn ,Ft
plane also yields an ellipse proportional to sin 
. Some ex-
amples are shown in Fig. 6. This suggests that ratcheting is
related to the area enclosed by trajectories in the �Fn ,Ft�
plane.

D. Sign of the strain

Ratcheting with small numbers of particles has another
distinguishing property: the strain accumulation can be either
positive or negative. Note that in Eq. �1�, the average im-
posed force does not correspond to an isotropic pressure,
because q�t��0. The pressure exerted by the walls on the
top and bottom of the sample are larger than at the side
walls. Thus one expects the sample to be gradually flattened,
with the top and bottom walls moving toward each other,

while the side walls are pushed apart. This corresponds to
�	0 in Eq. �2�. A series of 100 different ratcheting simula-
tions with 16 particles were performed, differing from each
other only in the initial condition. Of these 100 simulations,
71 exhibited unambiguously ratcheting. Of these 71 cases
ratcheting, 51 had �	0 as expected, but the remaining 20
had ��0.

On the other hand, when the sample size is larger, one has
�	0 whenever there is ratcheting. A second series of 25
simulations, this time with 400 particles, yields 18 unam-
biguously ratcheting simulations, all with �	0. The range of
� observed is also much smaller than for 16 particles. These
results suggest that the strain accumulated by a large sample
is some kind of average over strain accumulated by the small
regions composing it. In these small regions, there can be
either negative or positive strain, but after averaging, these
fluctuations are smoothed out, so a large sample has a quite
predictable behavior. Previous studies of granular ratcheting
always considered large numbers of particles, so this was
never noticed.
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FIG. 4. Trajectories of selected nonsliding contacts in the sys-
tem shown in Fig. 1.
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FIG. 5. Strain per cycle under elliptic cyclic loading �see Eqs.
�4� and �5��. The circles are the observed points, and the line is a fit
of the form ��=A sin 
. The simulations were done with 16 par-
ticles. Sliding contacts were suppressed by setting �=�.
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III. ORIGIN OF RATCHETING

A. Particle interaction model

We now turn our attention from the description of granu-
lar ratcheting to its cause. We will consider a nonsliding
contact between two particles subjected to cyclic external
forces. To facilitate the analysis, we assume that Fn is linear
in the overlap distance. One imagines that when two grains
first touch, two springs are created, one in the tangential and
the other in the normal direction. Both springs obey Hooke’s
law so that the normal and tangential contact forces are pro-
portional to the spring elongations Dn, Dt:

Fn = − KnDn, Ft = − KtDt, �6�

where Kn and Kt are the spring constants. Here, Fn�0 is
interpreted as pushing the particles apart, and Dn	0 occurs
when the particles overlap. Equation �6� holds only for
touching Dn	0 particles, so Fn�0 in accord with Eq. �3�.
On the other hand, Dt can have either sign, corresponding to
the two opposite tangential directions �up and down in Fig.
7�.

The springs are stretched by the relative motion of the
particles, as long this does not violate any of the conditions
in Eq. �3�. When the contact is nonsliding, one has

dDn

dt
= Vn,

dDt

dt
= Vt, �7�

where Vn and Vt are just the relative velocities at the point of
contact

Vn = �vi − v j� · n , �8�

Vt = �vi − v j� · t − ri�i − rj� j , �9�

where vi, �i, and ri are the velocity, angular velocity and
radius of particle i, and i and j label the touching particles.
The unit vector n

n =
xi − x j

�xi − x j�
�10�

points from particle j toward particle i, and t is a tangent
vector. If the two-dimensional space is assumed to be em-
bedded in a three-dimensional one, t can be defined as t=z
�n, as shown in Fig. 7. The forces Fn and Ft are then di-
rected along n and t, respectively. Note that the signs in Eq.
�9� depend on the choice of n, t, and the meaning of positive
and negative Dt. In Fig. 7, Dt�0 means points attached to
particle i move upward relative to points attached to particle
j.

If a contact opens, then Fn=Ft=0 in accord with the first
condition of Eq. �3�. If two separated particles come together
again, there is no memory of the previous contact.

The second condition in Eq. �3� is enforced by setting

Dt =  �
Kn

Kt
Dn �11�

whenever using Eq. �7� would lead to a violation of Eq. �3�.
Sliding contacts are accounted for by modifying Eq. �7�, but
we do not need to consider this in detail, since sliding is not
needed for ratcheting to occur, as shown in Sec. II C.

Note that no damping has been included in Eq. �6�. This is
because ratcheting is a quasistatic phenomenon. As the fre-
quency of the cyclic loading becomes very long, the defor-
mation per cycle approaches a constant. In the limit of an
infinitely long cycle, the particle velocities vanish. Any
damping will also vanish, since it is proportional to the ve-
locities. Since ratcheting exists in the limit of infinitely long
cycles, one does not need to consider damping in order to
understand granular ratcheting. Nevertheless, damping is al-
ways included in simulations to model the loss of energy
when grains collide or slide against one another.

The model that has been described above has been in use
for almost thirty years �7�. It has been used in many different
studies, and considered to be well understood. Nevertheless,
we show that this model contains an approximation that gen-
erates granular ratcheting.

B. Path-dependent potential energy

Granular ratcheting occurs because the model described
in Sec. III A yields a path-dependent potential energy. Here,
we are referring to the potential energy stored in a contact
when two particles overlap. It models the elastic energy
stored when two grains are pushed together. If the force
pushing two particles together is suddenly released, this po-
tential energy is converted into kinetic energy, and the par-
ticles will separate. When they separate, the highest possible
kinetic energy they can attain is

E =
1

2
�KnDn

2 + KtDt
2� . �12�

Thus Eq. �12� gives the potential energy stored in the con-
tact.

We now show that this energy can be changed if the par-
ticles execute a closed path relative to one another. Consider

j in

t

FIG. 7. Definitions for particle interaction laws. The unit vector
n defined in Eq. �10� points from particle j toward particle i, and
t=z�n, where the z axis points out of the page.
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the path shown in Fig. 8. This figure shows a single contact
between two particles. Let the lower particle be fixed, and let
the contact between the two grains be always nonsliding. The
point A marks the center of the upper particle, which is then
moved so that it traces out the path: A→B→C→D→A.
Neither particle rotates. Even though the path is closed, the
length Dt of the tangential spring is changed.

The changes in Dn and Dt during this cycle are sketched
in Fig. 9. The segments AB and CD change only the normal
spring length Dn, whereas the arcs BC and DA change only
the tangential spring length Dt. Segments AB and CD are of
equal length, so at the end of the cycle, Dn has returned to its
initial value. However, arc BC is shorter than arc DA because
it lies closer to the center of the lower particle. Therefore, Dt

does not return to its original value, because Eq. �9� implies
that the change in the tangential spring length depends only
on the distance moved, irrespective of the distance between
the touching particles. Thus a cycle that returns the particles
to their initial positions can modify the potential energy. The
potential energy of a contact does not depend only on the
coordinates of the grains, but also on the past relative move-
ments.

To see why this leads to granular ratcheting, note that Dt
determines not only the potential energy, but also the tangen-
tial force. Thus, when the particle executes the cycle shown
in Fig. 8, and returns to A, the contact force has also been
modified.

Now let us consider a packing of particles, subjected to
quasistatic cyclic loading. At the beginning of the loading
cycle, the packing is in static equilibrium, so that the net
force on each particle vanishes. As the external load is var-
ied, the contact forces and the particle positions must also
change. After one loading cycle, the external load has re-
turned to its initial value. If all the particles return to their
initial positions and all the contact forces to their initial val-
ues, then there is no deformation of the sample, and thus no
ratcheting. On the other hand, if the contact forces have not
returned to their initial values, the packing will no longer be
in force equilibrium, and some deformation must occur.

C. The role of sliding contacts

The explanation of ratcheting presented here makes no
reference to sliding contacts. Yet earlier studies showed a
tight connection between sliding contacts and ratcheting. To
understand the role of sliding contacts, it is necessary to
consider a more general motion, such as the one shown in
Fig. 10, where the upper particle traces out a convex poly-
gon. The trajectories of the nonsliding contacts shown in Fig.

FIG. 8. The origin of granular ratcheting. This figure shows two
touching disks. The lower disk is fixed, and the upper disk moves
without rotating, its center tracing out the closed path A→B→C
→D→A. The contact forces return to their initial state only if the
upper particle stops at A� instead of proceeding to A.

DA B C AA’

t

Dt

Dn

t

FIG. 9. Spring lengths Dn, Dt for the cycle sketched in Fig. 8.
Initially, Dt=0 and Dn	0. As the upper disk moves from A to B,
Dn decreases. Then Dt increases as the upper disk moves from B to
C. When it arrives at D, Fn has returned to its original value. How-
ever, upon closing the cycle �returning to A�, Ft does not return to
its initial value.

�

�

�

Ο

A
B

FIG. 10. A cycle where the lower particle is fixed and the upper
particle traces out a convex polygon. If the trajectory is given in
polar coordinates with the origin being the center O of the lower
particle, points A and B are where the angular coordinate takes on
its maximum and minimum values.
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4 are possible examples. Again let us use polar coordinates,
with the origin placed at O. The path of the upper particle
will now be given by r�t� and ��t�, where t is time. We
identify two points, labeled A and B in the figure, where ��t�
attains its maximum and minimum values. At any time, the
tangential velocity is given by

Vt = r
d�

dt
�13�

and so the total change of the tangential spring, as the par-
ticle moves from A to B is

�Dt�A → B� = �
tA

tB

r�t�
d�

dt
dt = �

�A

�B

rAB���d� , �14�

where rAB��� gives the trajectory that the particle follows
from A to B. The change in Dt on the return trip is

�Dt�B → A� = �
�B

�A

rBA���d� , �15�

where rBA��� is the path followed from B back to A. The total
change in length of the tangential spring is obtained by add-
ing Eqs. �14� and �15� together:

�Dt = �
�A

�B

�rAB��� − rBA����d� . �16�

If the particles are very stiff, then the deformations are small:
��A−�B��1 and �rAB−rBA��ri+rj. Then Eq. �16� can be
written

�Dt =
a

ri + rj
, �17�

where a is the area enclosed by the trajectory of upper par-
ticle.

Now the role of the sliding contacts becomes clear. If
there are no sliding contacts, then the trajectories are straight
lines, and rAB���=rBA��� for all �B����A, and a=0. Thus
there is no change in Dt if the particles return to their original
positions, and ratcheting does not occur. On the other hand,
the presence of sliding contacts guarantees that a�0, so the
particles cannot return to their original positions, and ratch-
eting occurs. The reason why sliding contacts are required to
obtain trajectories that enclose a nonzero area is explained in
the Appendix.

IV. ANGULAR MOLECULAR DYNAMICS

A. Algorithm

1. Definition of the tangential spring

To confirm our explanation of granular ratcheting, we
show how it can be eliminated by using a new method of
calculating the tangential forces where the potential energy is
path-independent. To do so, we retain Eq. �12�, but define Dn
and Dt in such a way that they depend only on the coordi-
nates of the particles. For the spring in the normal direction,
this is straightforward. If the particle positions are given, the

overlapping distance can be used as the normal spring length

Dn = ri + rj − �xi − x j� , �18�

where xi and x j are the positions of the touching particles and
ri and rj their radii.

For the tangential spring, the point of first contact must be
stored. Let us imagine that when two particles first touch, a
spot is painted on each particle, marking the point where
they touch. Let these points be called A and B. The points of
first contact are fixed to the particle surfaces, and thus carried
with the subsequent solid-body motion of the particles. To
determine the tangential spring length at a later time, one
first determines the current points of contact C and D. These
points are defined by the intersection of the particle surfaces
with the line connecting the centers. The tangential spring
length is the length of the arc AC, plus the length of the arc
DB, as shown in Fig. 11.

One useful side effect of calculating the tangential springs
in this way is that one can easily obtain the distance the
particles roll relative to one another. If two particles touch,
and then roll without sliding, the points A through D will be
as sketched in Fig. 12. The distance rolled is the length of the
arc AC or BD �see Fig. 12�. Note that this measure of the
rolling is objective, because it is based on points fixed on the
particles themselves, and is thus independent of any solid-
body motion imposed on the two particles.

Each point of a circle can be assigned an angle, obtained
by measuring the angle between the x axis and a line deter-
mined by the point in question and the center of the circle. In
this way one can assign the angles �A, �B, �C, and �D to the
points A, B, C, D, and arc lengths can now be calculated by
subtracting angles. Thus the arc length AC is ri��A−�C�.
Note that the arc length has a sign, which is necessary for
distinguishing between rolling and sliding. Note also that DB
is rj��B−�D� since angles are measured with respect to par-
ticle j and not i.

Now we can write the tangential spring length as

A

D

C

B

j i

FIG. 11. The definition of the tangential spring. Its length is
equal to the arc length AC plus the arc length DB. Points A and B
are defined when the two particles first touch. They are carried by
the rigid body motion of the particles. Points C and D are defined
by the intersection of the line connecting the centers �horizontal
line� with the particle surfaces.
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Dt = rj��C − �A� + ri��D − �B� , �19�

where we adopt the convention that Dt increasing means that
point A in Fig. 11 moves upward �i.e., �A decreases�, and B
moves downward �i.e., �B decreases�. The rolling distance is

Droll =
rj��C − �A� − ri��D − �B�

2
. �20�

2. Direct implementation

The most obvious way to implement this algorithm is to
calculate the angles �A through �D, and then use Eq. �19� to
calculate the spring length. The angles �A and �B can be

found by integrating the equations �̇A=� j, �̇B=�i. But it may
be more economical to assign an angular coordinate �i�t� to
each particle i. When the particle positions are updated, �i

can be updated as well, using �̇i=�i. Then at the time t� of
first contact, one stores �i�t��, and ��i=�i�t��−�n, where �n

is the angle of the point of first contact at time t�. Then at any
later time t:

�A = �i�t� − �i�t�� + ��i. �21�

The angles �C and �D are calculated at each time step from
the positions of the particles. Writing nx and ny for the two
components of n,

�C = � tan−1 nx/ny , nx � 0,

� − tan−1 nx/ny nx 	 0.
� �22�

Then �C is moved into the correct interval by adding or
subtracting 2�. Then one uses �D=�C�. In this way, both
the rotation and translation of the particles is taken into ac-
count.

If a contact slides, one moves the points A and B along the
particle surfaces so that Eq. �11� is satisfied. In a similar way,
one could move these points to set Droll=0 while leaving Dt
unchanged.

3. Implementation through integration

An alternative way of implementing this algorithm is to
modify the existing Cundall-Strack algorithm. A few minor

modifications are necessary to obtain an algorithm with a
potential energy given in Eq. �12� which is path independent,
with Dt defined as in Eq. �19�.

To do this, first express Ḋt and Ḋroll in terms of the motion
of the particles. To do this, we need

ṅ =
�vi − v j� · t

�xi − x j�
t , �23�

where the tangent vector is t=z�n as in Fig. 7. Then Eqs.
�19�, �21�, and �22� give

Ḋt = − ri�i − rj� j + ��vi − v j� · t , �24�

where we have defined

� =
ri + rj

�xi − x j�
. �25�

Note that the first of these is equivalent to Eqs. �7� and �9�
only when �=1 or �xi−x j�=ri+rj, i.e., when the particles are
just touching. The usual implementation of the Cundall and
Strack model, therefore, contains an approximation, namely,
�	1. Normally one chooses a stiffness high enough so that
this approximation is reasonable, but it nevertheless has an
effect on the simulation results.

In the same way, one can obtain a rolling velocity from
Eq. �20�:

Ḋroll = − ri�i + rj� j +
ri − rj

�xi − x j�
�vi − v j� · t . �26�

To obtain the equations of motion, one cannot simply use Eq.
�6�. To guarantee conservation of energy, one defines the
Lagrangian �8�

L = T − V , �27�

where T is the kinetic energy of a system and V is the po-
tential energy. In our case, we consider the two touching
particles whose kinetic energy is

T =
1

2
mi�ẋi

2 + ẏi
2� +

1

2
mj�ẋj

2 + ẏ j
2� +

1

2
Ii�̇i

2 +
1

2
Ij�̇ j

2. �28�

The potential energy V is given by Eq. �12�. The equations of
motion are then given by

d

dt

 �L

� q̇
� −

�L

�q
= 0, �29�

where q is one of the coordinates of the grains
xi ,yi ,�i ,xj ,yj ,� j. Applying this equation yields

mi,jẍi,j =  KnDnn̂  �KtDtt̂ ,

Ii,j�̈i,j = KtDtri,j . �30�

Note that these differ from Eq. �6� by the presence of the
factor � in the tangential force. This same factor appears in
Eq. �24�. This means that this new method can be imple-
mented simply by inserting this factor in the appropriate
places in the program. Sliding can be added in the way de-
scribed in Sec. III A, except that a factor of � should be

B
A

DC

j i

FIG. 12. Definition of rolling distance. It is the average of the
distance AC and the distance BD. The points are defined as in
Fig. 11.
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included in the denominator of the right-hand side of
Eq. �11�.

B. Results

We have compared the traditional Cundall-Strack algo-
rithm used in Secs. II C and II D with the two different
implementations of the angle-based algorithm discussed in
Sec. IV A.

1. Simulation parameters

In all cases, the initial condition was generated by placing
grains on a lattice in a square domain. The radii are uni-
formly distributed within the interval rmax�0.7,1�, where rmax

is chosen so that the desired number of particles will fit in
the domain.

Two walls of the domain are fixed, and the other two are
movable. A force proportional to wall length is applied to the
movable walls, and they compress the particles at uniform
stress into a packing. During this time of compression, the
particles are smooth �friction ratio �=0�. Once this compres-
sion is complete, one sets �=0.2, and imposes cyclic loading
as described above.

The system of units for the simulation is given by the
initial length L of the system, the �two-dimensional� pressure
p applied during compression, and the density � of the par-
ticles. In these units, the stiffness of the particles is Kn=Kt

=100p. The unit of time is �=��L2 / p. One cycle lasts 10�.
At least 100 cycles were performed in all simulations.

The position of the movable walls are recorded at the time
of minimum force during each cycle. By comparing these
values from one cycle to the next, an accumulation of strain
can be detected. To determine whether a sample ratchets, the
following procedure was applied. First, the first 29 cycles
were neglected to eliminate transients. Then Lx0 and Ly0 were
defined by the positions of the walls at the beginning of the
thirtieth cycle. Next, the strain �, defined in Eq. �2� was
calculated for each subsequent cycle. Finally, we checked
whether � increases linearly with cycle number N. This was
done by fitting a line to the observed �� ,N�, and calculating
the root mean square deviation of the observed points from
the fit. If this number was smaller than the slope, the simu-
lation was judged to exhibit ratcheting. Otherwise, it was
considered nonratcheting.

2. Ratcheting in small systems

We subjected 100 different small packings �16 particles�
to cyclic loading as described above. With the unmodified
Cundall-Strack algorithm, 71 simulations exhibited ratchet-
ing. The deformation per cycle �� varied over a wide range:
10−12	 ����	10−6, with a geometric mean of 8�10−9. Both
positive and negative values were observed: −10−6	��
	4�10−7.

When the Cundall-Strack algorithm is modified as de-
scribed in Sec. IV A 3, 62 simulations still exhibit ratcheting,
but at a much lower amplitude. One observes 10−13	 ����
	2.5�10−10 with a geometric mean of 1.1�10−11. These
results are summarized in Fig. 13. One sees that the use of

the corrected equations leads to a 104-fold reduction of
granular ratcheting.

The remaining granular ratcheting is due to integration
errors. This can be shown by taking a single initial condition,
and changing the time step. Typical results are shown in Fig.
14. With the original Cundall-Strack algorithm, ratcheting is
independent of the time step. When it is modified, then the
ratcheting deformation is proportional to the time step.

Finally, when the method described in Sec. IV A is imple-
mented by direct calculation of angles, no simulations
ratchet. 28 of the simulations exhibit a constant strain with
���	10−14 for every cycle. Note that such small deforma-
tions are not even visible in Figs. 13 and 14. The others
exhibit a variety of other behaviors that will be discussed in
the next section.

3. New behaviors in small systems

Once ratcheting has been removed or reduced, new be-
haviors come to the foreground. The most common of these
are outliers. The strain is independent of cycle number, ex-
cept for occasional cycles. An example is shown in Fig. 15.
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FIG. 13. Deformation per cycle for all ratcheting simulations.
100 different configurations were generated using different random
number seeds.
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FIG. 14. Dependence of ratcheting on time step. Crosses: origi-
nal algorithm. Circles: corrected algorithm. The time step is given
in multiples of �K /mmin, where mmin is the smallest particle in the
simulation.
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A closer inspection of these simulations reveals that these
outliers are due to “rattlers:” particles without contacts. Since
there is no gravity, rattlers float inside cages in the packing.
Occasionally, they collide with walls of their cage. These
collisions coincide with the outlying points. Once the colli-
sion is past, the packing returns to its initial state, and the
rattler floats off toward another part of its cage. The packing
that produced Fig. 15 is shown in Fig. 16. The rattler is
found in the upper center of the packing. It moves within a
cage formed by five particles and the upper wall. The outly-
ing points in Fig. 15 coincide with collisions between the
rattler and its cage. However, not all collisions leave a trace
in Fig. 15; the amplitude registered in Fig. 15 probably
strongly depends on the time within the cycle where the
collision takes place.

The frequency of collisions with the cage can vary widely.
Sometimes only one point out of 70 is perturbed. In other

cases, every point can be considered as an outlier. Another
thing that can happen when the rattler’s cage is small is that
it can be driven in the cage by the motion of the surrounding
particles in a periodic way. This leads to a periodic depen-
dence of � on N, as shown in Fig. 17.

Rattler-induced outliers exist also in the original Cundall
and Strack method. When on inspects the 29 nonratcheting
simulations, one finds that 25 of them have perturbations due
to rattlers.

Another effect that rattlers can cause is a sudden step in
the strain. This occurs when the particles forming the cage
have only weak contact forces. The rattler can induce a sud-
den step in the strain by provoking a small rearrangement of
these particles.

One way to reduce the effect of the rattlers is to apply a
weak gravitational field so that they can no longer float
slowly from one side of their cage to another. When this is
done, outliers still exist, but the perturbations they introduce
are much smaller—O�10−12� instead of O�10−7�.

Another phenomenon is “shakedown,” which has already
been investigated �3�. In shakedown, the accumulated strain
per cycle decreases each cycle. In Fig. 18, we show an ex-
ample. The time required to reach a level of negligible strain
accumulation is variable. In Fig. 18, strain is still accumulat-
ing, even after 1000 cycles. In other simulations, shakedown
takes only a few cycles.

4. Large systems

To study these phenomena in larger systems, a series of
25 simulations with 400 particles was carried out. With the
original Cundall-Strack method, ratcheting is observed, with
a much narrower range of strain accumulation, as discussed
in Sec. II D. When either of the modifications proposed in
Sec. IV A is used, outliers dominate the stress-cycle graphs.
This is probably because as the packing becomes large, the
probability of having a rattler approaches unity. When a
weak gravitational field is applied, the phenomena of shake-
down dominates.

V. CONCLUSIONS

We have uncovered the cause of granular ratcheting. It is
due to a potential energy that depends not only on the par-

0 10 20 30 40 50 60 70
N

-4

-2

0

2

4

6
10

6
γ

FIG. 15. Strain as a function of cycle number for a simulation
with outliers.

FIG. 16. A configuration that causes outliers. The arrow shows
the motion of the rattler. The normal forces are shown by the lines
connecting particle centers. The tangential forces are shown by
lines perpendicular to the normal forces. Note that the rattler does
not participate in the force network.
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FIG. 17. Accumulated strain � versus cycle number for a simu-
lation performed with the angle based method of calculating tan-
gential forces. The strain is periodic. This arises when the rattler is
confined in a very small cage.
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ticle positions, but also on their past trajectories. As a granu-
lar assembly is subjected to cyclic loading, it is impossible to
return both the particle positions and the contact forces to
their initial values, so a small deformation occurs with each
cycle. It follows that granular ratcheting can be eliminated
by defining a potential energy depending only on the current
particle positions. This was confirmed by extensive numeri-
cal simulations using two different implementations of this
idea.

This result suggests that contact modeling should focus on
the potential energy as the fundamental quantity, and then
use Eq. �29� to obtain the forces. In contrast, the most com-
mon approach taken in the literature is to directly postulate
forces based on physical grounds, without considering the
potential energy.

One possible criticism of this work is that it is only con-
cerned with disks, whereas ratcheting has been found in
packings of polygons. However, the ratcheting mechanism
found in this paper works equally well with polygons. If one
replaces the circles in Fig. 8 with polygons or modifies the
normal force law, nothing in the argument changes. The mo-
tion described in the caption of the figure and in Sec. III B
still leads to a change in potential energy and contact force.
To remove ratcheting, one must insert in a overlap-dependent
factor in front of the relative translational velocities, as we
have done in Eq. �24�. We are not aware of any such term in
the literature. Reference �2� does not give a formula equiva-
lent to Eq. �24�, so one cannot be sure that the ratcheting
observed in that paper is explained by the mechanism pre-
sented here. However, an earlier paper by the same authors
�10�, also dealing with polygons, does give such an equation,
without the overlap-dependent factor. So if the models of
these two papers are the same, then this paper explains the
ratcheting observed in Ref. �2�.

Another important question is the origin of ratcheting ob-
served in three-dimensional simulations �6�. Our explanation
of ratcheting works equally well in three dimensions. An
additional complication arises in three dimensions, because
the tangential spring has not only a length, but also a
direction—it lies in the tangential plane at the point of con-
tact, and can be rotated as well as stretched by the motion of

the particles. Approximations made when calculating the ro-
tation of this vector could introduce new sources of ratchet-
ing.

Does the explanation of granular ratcheting presented
here shed light on ratcheting observed in experiments? At a
detailed level, the numerical mechanism cannot be the same
as the physical one. Numerical granular ratcheting is a con-
sequence of the way the tangential spring is stretched. In
experiments, the contacts between the particles are not gov-
erned by the stretching of springs. Indeed, if two touching
particles can be considered as making up a single elastic
body, then force and position cycles will coincide, as there is
a potential energy.

However, the results of this paper do show that granular
ratcheting in the experiments will occur if force and position
cycles are not equal. In principle, this could be checked by
examining a single contact under cyclic loading. Such an
experiment would be difficult to do, since very small relative
displacements must be measured. And it must also be men-
tioned that the idea of two contacting particles acting as if
they were welded together at the contact surface is itself an
idealization. There may be zones of slip at the contact �even
when the contact as a whole does not slide�, and this may
give rise to a complicated behavior when the contact is sub-
jected to cyclic loading. Another possibility is that fluid
could coat the surfaces of the touching particles, possibly
lubricating them. Or abrasion at the contact point could gen-
erate very tiny particles trapped between the two touching
surfaces. These particles could act like fault gouge �11� on a
very small scale, facilitating a relative tangential motion. All
of these effects may lead to a history-dependent potential
energy, and thus to granular ratcheting through the mecha-
nism discussed in this paper.
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APPENDIX: STIFFNESS MATRIX THEORY

The section presents a very brief review of stiffness ma-
trix theory. This theory applies to granular packings under
quasistatic loading, and thus is applicable to granular ratch-
eting. We explain below how this theory explains certain key
properties of packing under cyclic loading, namely, �i� why
particle trajectories are straight lines when there are no slid-
ing contacts, and the forcing is given by Eq. �1�, �ii� why this
is no longer true when there are sliding contacts, and �iii�
why the forcing given in Eq. �4� generates particle trajecto-
ries with a nonzero area.

1. Introduction to stiffness matrix theory

In stiffness matrix theory �9�, the behavior of the packing
is piecewise linear. Thus time can be divided into intervals
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FIG. 18. Accumulated strain � versus cycle number for a simu-
lation performed with the angle based method of calculating tan-
gential forces. This sample exhibits shakedown.
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�ti , ti+1� during which the velocities of the particles are lin-
early related to the change in forces

dfext

dt
= k · v , �A1�

where fext represents the external forces �Fx and Fy for the
biaxial box�, v contains the velocities of the particles and
walls, and k is called the stiffness matrix. It relates the ve-
locities �or displacement increments� of the particles to the
change in the force exerted on each particle by its neighbors.

The motion is only piecewise linear because the stiffness
matrix k depends on the status �sliding or nonsliding� of each
contact. Whenever a contact status changes, k also changes.
Therefore, the times ti� which define the intervals of linear-
ity are the times when one or more contacts change status.

Equation �A1� holds when the forcing is quasistatic, and
the particles are quasirigid. Quasistatic forcing means that
the time scale associated with the forcing is much longer
than the time the packing needs to react. Particles can be said
to be quasirigid if their stiffness is much greater than the
confining pressure. Note that these two assumptions are re-
lated: if the particles are very stiff, the speed of sound is very
high, and the packing can quickly react to changes in the
external load.

2. Application to biaxial test

If one considers a biaxial test, with the forcing given by
Eq. �1�, then only the entries of fext corresponding to the
walls are nonzero, because no external forces are applied to
the particles. Furthermore, in Eq. �A1�, only those compo-
nents associated with varying forces survive differentiation
by time. Thus Eq. �A1� becomes

dq

dt
Lx = k · v , �A2�

where Lx is a constant vector, all of whose components are
zero, except the y component of the force on the upper and
lower walls. All other components of fext are either zero or
constant.

One would like to invert k and bring it onto the left-hand
side of the equation. However, k is singular because there are
certain collective motions that do not change the spring
lengths, and hence do not change the forces. One example is
the uniform motion of all particles. They do not move rela-
tive to one other, and provoke no change in force. Let B be
the set of all such motions. We can be sure that the left-hand

side of Eq. �A2� is orthogonal to every member of B, for if it
were not, the packing would be unstable �9�.

Now define the matrix k̂ that will act like an inverse of k.
It is defined by

k · v = f and v � B ⇒ k̂ · f = v . �A3�

This equation gives the result of applying k̂ for 3N−dim B
linearly independent vectors. To fully determine k̂, we must
say how it acts on the other dim B dimensions of R3N. Let F
be the range of k. Then

k̂ · f = 0, for f � F . �A4�

This determines k̂. Note that k̂ ·k is a projector that removes
B.

Using this in Eq. �A2�, one can write

v =
dq

dt
k̂ · Lx, �A5�

which can be integrated:

x = x0 + q�t�k̂ · Lx. �A6�

Here x is a vector containing the positions of the particles
and walls. Equation �A6� shows that the position of each
particle moves on a line defined by the appropriate compo-

nents of k̂ ·Lx. If no contacts change status, each particle
remains on this line, moving back and forth as q�t� varies
periodically. So no area is traced out by position cycles, and
ratcheting does not occur.

But k changes whenever a contact changes status. Thus
when a contact starts or stops sliding, the relation between v
and fext changes, and the particle motion changes direction.
This is what we saw in Fig. 4.

Another way to get paths that are not lines is add another
term to the left-hand side of Eq. �A2�. When we use the
forcing given in Eqs. �4� and �5�, then Eq. �A2� becomes

dqx

dt
Lx +

dqy

dt
Ly = k · v , �A7�

and thus the motion is

x = x0 + qx�t�k̂ · Lx + qy�t�k̂ · Ly . �A8�

Thus if the forcing traces out an area in the �qx ,qy� plane,
than each contact traces out a proportional area in the relative
position plane. This, together with Eq. �17�, explains the re-
sult in Fig. 5.
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